An algorithm for unsupervised learning and optimization of finite mixture models
نویسندگان
چکیده
منابع مشابه
Unsupervised Learning of Finite Mixture Models
ÐThis paper proposes an unsupervised algorithm for learning a finite mixture model from multivariate data. The adjective ªunsupervisedº is justified by two properties of the algorithm: 1) it is capable of selecting the number of components and 2) unlike the standard expectation-maximization (EM) algorithm, it does not require careful initialization. The proposed method also avoids another drawb...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملCompetitive EM algorithm for finite mixture models
In this paper, we present a novel competitive EM (CEM) algorithm for "nite mixture models to overcome the two main drawbacks of the EM algorithm: often getting trapped at local maxima and sometimes converging to the boundary of the parameter space. The proposed algorithm is capable of automatically choosing the clustering number and selecting the “split” or “merge” operations e7ciently based on...
متن کاملUnsupervised Selection and Estimation of Finite Mixture Models
We propose a new method for fitting mixture models that performs component selection and does not require external initialization. The novelty of our approach includes: a minimum message length (MML) type model selection criterion; the inclusion of the criterion into the expectation-maximization (EM) algorithm (which also increases its ability to escape from local maxima); an initialization str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Egyptian Informatics Journal
سال: 2011
ISSN: 1110-8665
DOI: 10.1016/j.eij.2011.02.005